少妇无码精品23p_亚洲一区无码电影在线观看网站 _悠悠色一区二区_中文字幕亚洲无码第36页

Home / News Type Content Tools: Save | Print | E-mail | Most Read | Comment
Chief Designer Tells Tale of Manned Spaceflight: Interview
Adjust font size:

By Zhu Zengquan

On Oct. 15, the Shenzhou V, China's first manned spacecraft, was launched into space using a Long March-II-F carrier rocket from the Jiuquan Satellite Launch Center in northwest China's Gansu Province. Both the spacecraft and the carrier rocket were designed and built by China independently.

After a landmark 21-hour and 23-minute expedition around the globe 14 times, on Oct. 16 the spacecraft touched down almost precisely at the primary landing site in the grasslands of north China's Inner Mongolia.

The successful Shenzhou mission made China the third country in the world to send a man into space, following the former Soviet Union and United States.

Wang Yongzhi, 71, is the chief designer of China's manned space project and a world-famous rocket technology specialist. He gave an interview recently.

Starting with spaceship

Q: The success of China's first manned spaceflight has attracted worldwide attention. Some foreign media said that basically the Chinese manned spacecraft was modeled on the designs of Russia and the United States. Can you talk about the distinguishing features of China's manned space project?

A: I want to make two points clear. First of all, manned spaceflight is a massive, systematic project. It has been developed by China independently. Second of all, hundreds of people have been engaged in this project. Everyone has contributed to its success, and I cannot claim all the credit for myself.

On January 8, 1992, the central government made definite that China's manned spaceflight should start with a spaceship instead of shuttle. The manned spaceship program was put under an authorized plan on September 21 of that year, and four people were appointed in charge: Gen. Ding Henggao as general director, Gen. Shen Rongjun and Liu Jiyuan as deputy general directors, and I was appointed chief designer.

The decision of starting with a spaceship was based on China's actual conditions. However, because of this, we had to face a gap of at least 40 years. When evaluating the program in 1992, we expected our spaceship would be launched in ten years time. By 2002, 41 years had passed since Yuri Gagarin, the first cosmonaut of the former Soviet Union, was hurled into space. If we designed a spaceship similar to that one launched by the Russians 41 years ago, where would the significance of our project lie?

After repeated discussion, we finally set out the goal of China's manned space program: on condition that safety must be ensured, manifesting the Chinese characteristics of the spaceship. In the final design, we were to realize an all-round technological innovation, since it was easy to make partial improvements with computer technology.

The central government decided on September 21, 1992 to push the manned space program ahead in three steps: first, to launch two unmanned spacecraft and one manned spaceship; second, to develop technologies ensuring the precise docking between the spaceship and orbit module, and to set up a space lab; third, to develop more efficient and reliable vehicles able to launch a space station.

In the first step, which was called the "921 Project," four tasks were expected to be accomplished, i.e., mastering basic technologies for manned spaceflight, developing scientific space research, providing a primary carrier rocket and retrieving device for the spacecraft, and gaining experience for the planned eventual space station project.

As the chief designer, I've been under tremendous strain. Since we started late, we had to try hard to catch up with those countries that had already led a manned spaceflight. Actually, we held the ambition that once our spaceship came out, it would rival the best in the world.

Surpassing the Soyuz

Q: So far, which country boasts the best manned spacecraft in the world?

A: Since the time of the former Soviet Union, Russia has launched 92 manned space flights. The United States, the other big power in the field of spaceflight, gave up its spaceship after several initial trials, and turned to shuttlecraft development. So as far as spaceship design is concerned, beyond all doubt, Russia has held the lead.

Following Gagarin's Vostok and Alexei Leonov's Voskhod, at the beginning of the 1960s, the former Soviet Union conceived the Soyuz in the competitive atmosphere of the then Moon race. The Soyuz has ever since been the longest serving manned spacecraft in the world.

Q: What are the main features of the Soyuz?

A: Unlike the one-man Vostok craft, the three-seat Soyuz is composed of the reentry, orbital and service modules, and is able to conduct active maneuvering, orbital rendezvous and docking.

The Soyuz T version of the spacecraft flew its first manned mission in 1980, and since 1986 the Soyuz TM modification of the craft has been delivering crews to the Mir space station for over 10 years. The modifications feature multiple improvements in design, including the introduction of the new weight-saving computerized flight-control system and most important, the improved emergency escape system.

In addition, another version of the spacecraft, known as the Soyuz TMA, has been developed. The Soyuz TMA upgrades allow the TMA version to be used as a "lifeboat" for the International Space Station (ISS).

Our goal is to catch up with and surpass the Russian Soyuz. From the very beginning, we put forward a three-module plan. I was in charge of making an appraisal report on the three-module program, and the design was finally passed by an expert group in a vote of 3:2. The panel, set up by the then Ministry of Aero-Space Industry, comprised five authorities in China's space industry.

Q: As you mentioned before, the three-module design is an advanced feature of the Russian Soyuz TM. Then, where do the technical improvements and Chinese characteristics lie in terms of your three-module plan?

A: Dissimilar to the Soyuz TM, Shenzhou V has the orbital module in front. This multifunction orbital module, which has been enlarged by an additional section, gives expression to the superiority of our new technology.

The reason why we proposed the three-module plan was to design China's first manned spacecraft into an efficient and reliable vehicle, so that with little improvement in the future, it could be used to directly launch space stations, as planned in the third step of our space program. If adopting a conservative double-module program initially, additional docking experiments would be necessary to transform the double-module into three-module combination.

Jump over the monkey experiment

Q: From the launch of the unmanned Shenzhou I to Shenzhou IV, people kept on asking if experimental monkeys were put inside the spacecraft. Have you conducted such experiments in the past?

A: As a matter of fact, we jumped over it. Let me give you some statistical figures. By the end of 2001, as many as 426 astronauts throughout the world had been sent to outer space. By August, 2002, flights into space had reached 906. Now the record for the longest stay in space is two years, 17 days and 15 hours. So there has been a generally accepted opinion about whether or not astronauts can deal with weightlessness and adapt to space life. Definitely we don't have to test it with animals any more.

What really counts is if we can provide a reliable living environment for astronauts inside the module. All living conditions in the module must be 100 percent guaranteed, including oxygen supply, temperature, moisture, air composition, and atmospheric pressure.

Traditionally, all of the above conditions had to be tested with animals. Some people once suggested buying monkeys from south China's Yunnan for "aero-training". However, monkey experiments have many disadvantages. First, the experiment is expensive. It takes no less than 30 million yuan (roughly US$3.75 million) to set up a monkey feed experiment. Second, our spacecraft was designed to be able to fly in space for 7 days and nights in a row. If a monkey aboard didn't know how to eat and drink during that time and died, who could convincingly claim that it was not the craft's problem? Such cases can do nothing but create unnecessarily increases in an astronaut's mental strain. Third, since the maximum metabolic rate of the monkey is only one-sixth of that of man, at least 18 monkeys would have to be put in the three-seated spacecraft, otherwise human life in the module could not be simulated accurately and completely.

Q: Your description reminds me of the story of the Monkey King wreaking havoc in a Heavenly Palace, an episode from a popular ancient Chinese novel entitled Pilgrimage to the West. But, how did you test the living environment in the module?

A: Instead, we used a metabolic simulation device to test all the living conditions in the module. Several trial launches of an unmanned spaceship demonstrated that in the module, everything including oxygen supply was fine. Until last year, some people still kept on warning me that it was too risky to hurl an astronaut into space without experimenting on animals. Indeed, before their manned spaceflight, both the United States and the former Soviet Union conducted animal experiments. In this regard, they gained enough experience for us to draw on, so we really didn't have to do it all over again.

Multifunction orbital module

Q: Can you give more details on the orbital module?

A: In fact, space application has been the most important purpose of China's manned space project. In this respect, the design of Shenzhou V's orbital module is a good illustration. Honestly speaking, it's a multifunction module. To take the Russian Soyuz TM as an example, when it returned after five days in outer space, both the orbital module in the middle and the service module in the rear burned up in the atmosphere; only the reentry module in front, protected by heat-proof layer, was eventually recovered.

The Soyuz TM's orbital module was discarded in five days, while the Shenzhou V's will orbit for at least half a year for further scientific experiment. Launching a spacecraft is terribly expensive, so we must take the ultimate responsibility for our work. Therefore, keeping the orbital module in orbit can serve multiple purposes.

First, like an experimental satellite, the orbital module in orbit can continue to send back precious scientific data in the future.

Second, benefiting from materials collected by the orbital module in orbit, both theoretical space science and practical space application researches can be developed simultaneously. In this way, technically, the Chinese Academy of Sciences will be able to make necessary preparations for large-scale space application afterwards.

Third, the orbital module in orbit can be used for docking experiments. Strictly speaking, the planned space station project cannot get started until the docking technology has been well mastered.

The former Soviet Union and the United States each made five docking trials before launching their space stations. They placed a spacecraft into orbit at first, and then launched a second one into the same orbit. Since their spaceships could stay in space for 5 days at most, the link-up operation between the two crafts needed to be completed within 5 days.

We have planned to do the docking experiment differently. One way is to keep the orbital module in orbit for two years. So all spacecraft launched in the next two years will be able to dock with the orbital module. Another way is to keep the orbital module in orbit for half a year. Then we will launch a spacecraft at half-a-year intervals to dock with the orbital module. Each time we leave the new craft's orbital module in orbit to replace the previous one. Therefore, every docking experiment only needs one launch instead of two. In other words, both the former Soviet Union and the US had to launch ten crafts to do five docking trials. If we want to do the same number of trials, we only need to make six launches. All in all and either way we can save tremendous amounts of money.

Putting safety first

Q: On February 1 this year, the US space shuttle Columbia blew up, killing all seven astronauts aboard. That disaster stunned the whole world. What safety measures have been adopted in your manned spacecraft?

A: In our overall program, astronaut's safety has been a matter of prime importance. Actually, we've designed four escape schemes at the firing stage and 11 escape schemes at the lift-off stage to guarantee astronaut's safety.

We've also taken many lifesaving measures to protect against possible dangers once the spaceship enters orbit. For instance, in our final plan, after its fifth rather than tenth circuit, the spaceship would in advance change its orbit from elliptical to circular to increase the craft's chance to return to the earth's surface in case of emergency.

In the 1990s, we fired a retrievable satellite, but due to a program error, it did not return on time until several years later. This accident has sounded an alarm. If similar things happened to our spacecraft with a food load that can sustain the astronauts no more than ten days, it's not hard to imagine what will follow.

So we thought of installing a manual control device on the craft. For this, some people specifically consulted a Russian cosmonaut. The latter answered, "Without manual control of the spaceship, I have the right not to go aboard." Therefore, we hardened our resolve to install manual control.

There is a distance of 2,200 kilometers between the launch site and the seacoast. In case of any possible accident, we set up four rescue stations in Dongfeng, Yinchuan, Yulin and Handan respectively. However, if the carrier rocket fell into the Pacific Ocean, rescue work would meet a tremendous challenge. Definitely, it's beyond our ability to draw on aircraft carriers and hundreds of planes for reconnoiter and rescue at sea, as the United States used to do. Instead, in a wide expanse of water, we delineated three relatively small areas in which rescue forces were disposed. At the same time, an additional engine in the service module would be started in case of emergency to send the spacecraft to the closest sea area following a pre-designed program. This method has made assistance and salvage at sea much easier and more efficient.

Over the past 11 years, we've taken great pains with complicated escape schemes. It's not an overstatement to say that within our power, we've employed whatever means to guarantee the safety of both the astronaut and the spaceship.

'Shenzhou is Chinese spacecraft'

Q: What's your reaction to the rumor that Shenzhou was modeled on Russian design?

A: In 2001, I was invited to Moscow to attend a conference to mark the 40th anniversary of Gagarin's spaceflight. Meanwhile, the Moscow State Aviation Institute, my Alma Mater, conferred an honorary Ph.D. on me. At the conferring ceremony, I gave an account of China's manned spaceflight developments. Vasiliy Pavlovich Mishin, chief designer of the Soyuz and also my adviser at Moscow State Aviation Institute, was sitting right beside me then. After my speech, Mishin said in a loud voice, "Shenzhou is not the Russian Soyuz. Shenzhou is a Chinese spacecraft!"

(The author is vice commissar from General Armament Department of the PLA)

(China.org.cn, translated by Shao Da, November 4, 2003)

Tools: Save | Print | E-mail | Most Read
Comment
Pet Name
Anonymous
China Archives
Related >>
- Country's First Manned Spacecraft Blasts off
- China Declares Manned Space Mission Successful
- The Making of China's Astronaut
- Chief Designer on Shenzhou V Achievements
- How Far Are We away from a Space Power?
- China to Launch Space Station Modules 
- Next Manned Space Launch Will Carry 3
- Industry Chain Backing China's Manned Spaceflight
Most Viewed >>
- World's longest sea-spanning bridge to open
- Yao out for season with stress fracture in left foot
- 141 seriously polluting products blacklisted
- China starts excavation for world's first 3G nuclear plant
- 'The China Riddle'
- Irresponsible remarks on Hu Jia case opposed 
- China, US agree to step up constructive,cooperative relations
- Factory fire kills 15, injures 3 in Shenzhen
- FIT World Congress: translators on track
- Christianity popular in Tang Dynasty

Product Directory
China Search
Country Search
Hot Buys
999久久66久6只有精品| 91麻豆精品国产片在线观看| 你懂的日韩| 国产一区二区精品在线观看| 尤物视频网站在线| 国产成人精品综合久久久| 精品久久久久久中文字幕2017| 香蕉视频久久| 深夜做爰性大片中文| 台湾毛片| 精品在线视频播放| 黄视频网站在线免费观看| 91麻豆爱豆果冻天美星空| 青青久在线视频| 国产不卡精品一区二区三区| 欧美α片无限看在线观看免费| 天天做日日爱| 久草免费在线观看| 国产国语对白一级毛片| 国产伦精品一区三区视频| 日韩在线观看视频免费| 成人av在线播放| 欧美日本免费| 欧美α片无限看在线观看免费| 色综合久久手机在线| 日本特黄特黄aaaaa大片| 九九精品在线| 99色视频在线观看| 精品视频免费在线| 国产伦理精品| 九九热国产视频| 成人免费观看的视频黄页| 欧美1区2区3区| 黄视频网站免费看| 国产一区二区精品在线观看| 亚欧视频在线| 亚洲 国产精品 日韩| 久久精品店| 免费毛片基地| 欧美另类videosbestsex久久| 欧美一级视频高清片| 精品视频一区二区| 国产亚洲精品成人a在线| 亚洲www美色| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 天天色成人| 亚洲天堂在线播放| 欧美1区| 成人免费观看的视频黄页| 青青久久国产成人免费网站| 四虎久久影院| 国产一区二区福利久久| 色综合久久天天综合| 韩国毛片免费| 色综合久久久久综合体桃花网| 欧美18性精品| 999精品在线| 91麻豆爱豆果冻天美星空| 精品久久久久久中文字幕2017| 日韩男人天堂| 日韩免费在线| 欧美日本免费| 99热热久久| 日本在线播放一区| 91麻豆精品国产自产在线| 91麻豆精品国产高清在线| 青青久久网| 欧美爱色| 国产福利免费观看| 欧美激情影院| 韩国毛片免费大片| 青青青草影院| 日韩在线观看视频黄| 精品视频一区二区三区| 精品国产亚洲一区二区三区| 午夜激情视频在线观看| 久久精品大片| 成人免费高清视频| 精品国产三级a∨在线观看| 久久精品欧美一区二区| 日本免费乱人伦在线观看| 九九久久99| 欧美激情一区二区三区在线| 久久99欧美| 国产网站免费观看| 天堂网中文在线| 国产美女在线一区二区三区| 国产麻豆精品hdvideoss| 青青青草影院 | 日韩中文字幕在线播放| 黄色短视频网站| 午夜在线亚洲| 久久久久久久免费视频| 色综合久久久久综合体桃花网| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 香蕉视频一级| 欧美18性精品| 国产不卡高清在线观看视频| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 国产原创中文字幕| 成人影院一区二区三区| 国产a一级| 韩国毛片免费大片| 毛片成人永久免费视频| 91麻豆爱豆果冻天美星空| 欧美激情在线精品video| 国产极品白嫩美女在线观看看| 久草免费在线观看| 二级特黄绝大片免费视频大片| 黄视频网站在线观看| 日韩av片免费播放| 国产高清视频免费| 亚洲爆爽| 精品在线观看一区| 成人免费高清视频| 国产91素人搭讪系列天堂| 夜夜操天天爽| 国产视频在线免费观看| 国产成人啪精品| 国产伦久视频免费观看视频| 亚洲 激情| 日韩专区亚洲综合久久| 欧美18性精品| 久久国产精品永久免费网站| 你懂的日韩| 亚洲第一色在线| 久久精品免视看国产明星| 午夜在线亚洲| 日韩专区第一页| 成人免费网站久久久| 国产伦精品一区三区视频| 国产视频久久久| 午夜在线亚洲| 国产成人女人在线视频观看 | 色综合久久天天综合绕观看| 日本伦理黄色大片在线观看网站| 久草免费在线观看| 国产不卡福利| 久久国产精品自线拍免费| 精品国产一区二区三区久| 久草免费在线视频| 黄色福利片| 四虎影视久久久| 国产一区二区精品久久| 精品国产香蕉伊思人在线又爽又黄| 夜夜操天天爽| 二级片在线观看| 久久久成人网| 欧美1区2区3区| 二级片在线观看| 天天做日日爱夜夜爽| 免费一级生活片| 国产成a人片在线观看视频| 国产成a人片在线观看视频| 香蕉视频三级| 九九免费精品视频| 四虎论坛| 精品久久久久久免费影院| 久久成人综合网| 国产精品自拍一区| 成人在免费观看视频国产| 成人免费观看视频| 九九久久99综合一区二区| 欧美激情一区二区三区在线| 91麻豆tv| 国产精品1024永久免费视频| 日本特黄特色aaa大片免费| 国产一区国产二区国产三区| 日本免费乱人伦在线观看| 欧美大片a一级毛片视频| 国产综合91天堂亚洲国产| 韩国毛片| 深夜做爰性大片中文| 精品国产一区二区三区久| 色综合久久天天综合绕观看| 亚欧成人乱码一区二区| a级黄色毛片免费播放视频| 日韩av片免费播放| 成人影视在线播放| 欧美α片无限看在线观看免费| 精品国产香蕉伊思人在线又爽又黄| 国产综合成人观看在线| 精品国产香蕉伊思人在线又爽又黄| 日本特黄特黄aaaaa大片| 你懂的国产精品| 久久精品人人做人人爽97| 美国一区二区三区| 国产成人女人在线视频观看 | 可以免费在线看黄的网站| 一本高清在线| 免费一级片在线观看| 亚洲 欧美 91| 精品视频在线观看一区二区| 久久国产一久久高清| 久久国产影视免费精品| 日本特黄特色aaa大片免费| 国产亚洲精品成人a在线| 二级片在线观看| 国产精品1024在线永久免费| 天天做人人爱夜夜爽2020 |